Charmonium Production in Heavy-Ion Collisions

Loïc Grandchamp

Lawrence Berkeley National Laboratory

Texas A&M, Dec. 10th 2004 w/ R. Rapp

Observing Deconfinement

* Lattice QCD $T_c \sim 170 \text{ MeV}$ $\epsilon_c \sim 1 \text{ GeV/fm}^3$

Is the medium produced in HI collisions deconfined in its early stage ?

- Deconfinement probe
- present early
- retain memory of collision
- distinguish conf. vs deconf.

Look at the \mathbf{J}/Ψ

J/Ψ: a Promising QGP Signature

Charmonium in HI Collisions

Outline

- \bullet Motivations/Introduction \mathbf{V}
- Open charm production
- Direct charmonium production

Nuclear, QGP, Hadronic interactions

- Statistical charmonium production
- Thermal 2-component model
 - SPS results, RHIC predictions, excitation function
- In-medium effects
 - Lattice QCD, Rate equations
- Conclusions & outlook

Open Charm Production

- pA collisions
 - Scaling $\sigma_{c\bar{c}}(pA) = A^{\alpha}\sigma_{c\bar{c}}(pN)$

 $\alpha = 1.02 \pm 0.03$ [E789]

- AA collisions
 - SPS central Pb-Pb $N_{c\bar{c}} \sim 0.2$ per collision
 - RHIC central Au-Au $N_{c\bar{c}} \sim 10-20$ per collision

Primordial J/Y: Pre-Eq Effects

Charmonia Interactions in QGP

Charmonia Interactions in HG

* SU(4) effective Lagrangian [Haglin '99, Lin & Ko '99] $J/\Psi + \pi,
ho o D\overline{D}^{(*)}$

Statistical J/ Ψ Production at T_c

- ♦ Charm states populated according to thermal phase space at chemical freeze-out (V_H, T_c) $n = \frac{d}{2\pi^2} \int_{0}^{\infty} p^2 dp (\exp(\frac{\sqrt{p^2 + m^2} \mu}{T}) \pm 1)^{-1}$
- * Thermal densities: $n_{op} = \sum n_i, \quad i = D, D^*, \cdots$ $n_{hid} = \sum n_i, \quad j = \eta_c, \Psi, \cdots$
- Ncc from primordial (hard) production
 - c-quark fugacity γ_c solution of

$$N_{c\bar{c}} = \frac{1}{2} \gamma_c V_H n_{op} \frac{I_1(\gamma_c V_H n_{op})}{I_0(\gamma_c V_H n_{op})} + \gamma_c^2 V_H n_{hid}$$

* γ_c : 0.8 \rightarrow 6 from SPS to RHIC

♦ Statistical J/Ψ's

$$N_{J/\Psi}^{th} = V_H \gamma_c^2 \left[n_{J/\Psi}(T_c) + \sum_j \mathcal{BR}_{j \to J/\Psi} n_j(T_c) \right] \mathcal{R}$$

- Thermal equilibration of charm ?
 - Relaxation time approach $\mathcal{R} = (1 \exp(-\int d\tau/\tau_{eq})) < 1$

Thermal Fireball evolution

- Expanding thermal fireball
 - Trajectory in (μ_B , T) plane at constant *S* and N_B
 - Quasiparticle-QGP / resonance HG equation of state
- Cylindrical expansion

$$V = 2\left(z_0 + v_{\parallel}t + a_{\parallel}\frac{t^2}{2}\right)\pi\left(r_{\perp} + a_{\perp}\frac{t^2}{2}\right)^2$$

- Parameters fitted to
 - Final flow velocities
 - Hadro-chemistry
- Consistency with
 - Chemistry
 - Hydrodynamics
 - Dilepton yields

Centrality Dependence at SPS

Ψ'/Ψ Ratio

- \checkmark Suggestive for strong Ψ' dissociation in HG
- Hadronic in-medium effects ?
 - χ –restoration \leftrightarrow lower DD threshold $\rightarrow \Psi'$ above threshold

Centrality Dependence at RHIC

- * Thermal J/ Ψ 's dominate for central collisions
- Composition direct vs. thermal very different from SPS

Excitation Function

In-Medium Effects

- Lattice QCD heavy quark
 Free energy [Karsch et al. '00]
 - Reduction of the open charm threshold
 - Even below T_c
 - Smooth transition across T_c

- Spectral functions from Lattice [Karsch et al. '02]
 - Low-lying charmonia survive in the QGP
 - Mass ≡ constant
 - Large width increase across T_c
 [Umeda et al. '02]

Charm in Matter

Kinetic Evolution in HI Collisions

Kinetic approach – Rate equations:

$$\frac{dN_{\Psi}}{d\tau} = -\frac{1}{\tau_{\Psi}} \left[N_{\Psi} - N_{\Psi}^{eq} \right]$$

- $\tau_{\Psi}, N_{\Psi}^{eq}$ include in-medium effects
- ✤ Off-equilibrium features in the evolution
 - Chemical off-equilibrium: γ_c
 - local charm conservation: V_{corr}
 - Incomplete thermalization

SPS Results

RHIC Results

Sensitivity to the magnitude of in-medium effects

Systematics

Service Ser

Conclusions

- Thermal 2-component approach for charmonium production
 - "Direct" J/Ψ 's
 - QGP: Debye screening & parton diss. \Rightarrow quasifree
 - HG: SU(4) effective theory + geometric scaling
 - "Statistical" J/ Ψ 's (no open charm enhancement)
 - Common thermal evolution scenario
 - Consistent with SPS data and preliminary RHIC results
- * J/Ψ excitation function
 - "direct suppressed" (SPS) \Rightarrow "statistical coalescence" (RHIC)
- Improved approach
 - In-medium effects inferred from Lattice QCD
 - J/Ψ regeneration in QGP / open-charm threshold reduced

GP formation

J/Ψ regeneration

RHIC

Improves the Ψ'/Ψ ratio description

Outlook

Observables todisentangle mechanisms

- Charm chemistry
- P_T spectra
- c (D) elliptic flow
- Excitation function
- Bottomonium system
- * LHC

Extra Slides

Model Comparison at RHIC

High E_T Effects in NA50

Minimum Bias Analysis

Dilepton Spectra

Other QGP Suppression Mechanisms

In-Medium Effects - II

Indium Predictions for NA60

