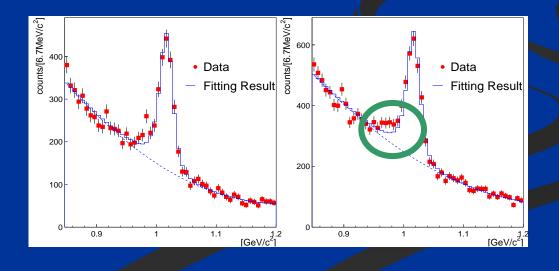
ϕ and ω mesons in a nuclear medium and the nuclear photoproduction reaction (II)

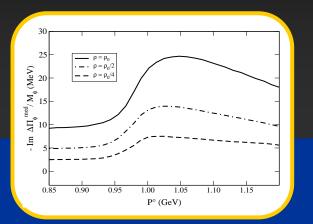
Daniel Cabrera

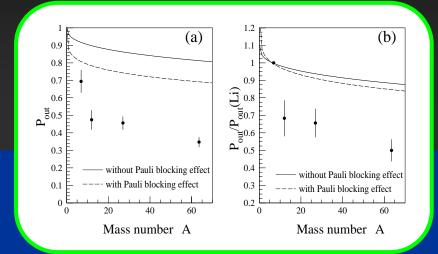
Cyclotron Institute, Texas A&M University

Nuclear Theory Seminar


September 16, 2005

Summary for ϕ meson


 ϕ meson mass and decay width in a nuclear medium


- Model calculation based on (anti-)kaon selfenergies
- ϕ decay width increases considerably in nuclear matter (6-8 $\Gamma_{\phi}^{\text{free}}$ at ρ_0)
- Very small change in the ϕ mass

• Very recent analysis from *p*-*A* dilepton spectrum from *KEK-PS* shows some nuclear medium effect ($\Delta M_{\phi} \approx -40 \text{ MeV}$, Γ_{ϕ} (ρ_0) $\approx 10 \Gamma_{\phi}^{\text{free}}$, no *p* dep.)

Summary for ϕ meson

Inclusive nuclear ϕ photoproduction: A dependence

• A dependence of loss of ϕ flux can be related to the in-medium ϕ decay width

• Clear deviation from unity in the calculated ϕ survival probability indicates a loss of ϕ flux due to nuclear medium effects

• Experimental results from LEPS find a reduction in the survival probability, stronger effect than calculated

ω meson: Outline

(Recent) experimental information on the ω meson in-medium decays

Overview of some theoretical work

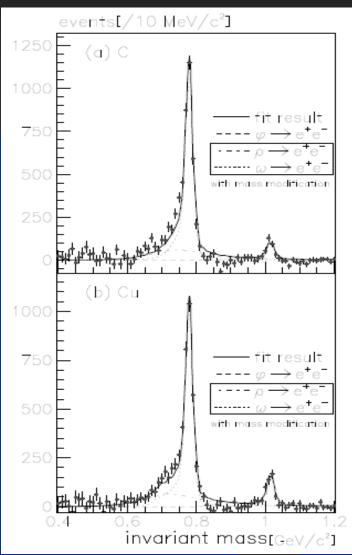
ω meson in the medium: experimental information

* Very small width in vacuum, mostly from 3π decay

* Appears overlapped with the ρ meson in the mass spectrum

• Several theoretical calculations predict *sizable changes* in mass / decay width at finite ρ or T

 Current experiments search for medium modifications in <u>mass spectrum</u> <u>observable</u> of decay products


Recent experimental results:

• KEK-PS E325: p-A reaction + $\rho/\omega \rightarrow e^+e^-$ decay

■ CB-TAPS/ELSA Col. @ Bonn: nuclear ω photoproduction + $\omega \rightarrow \pi^0 \gamma$ decay

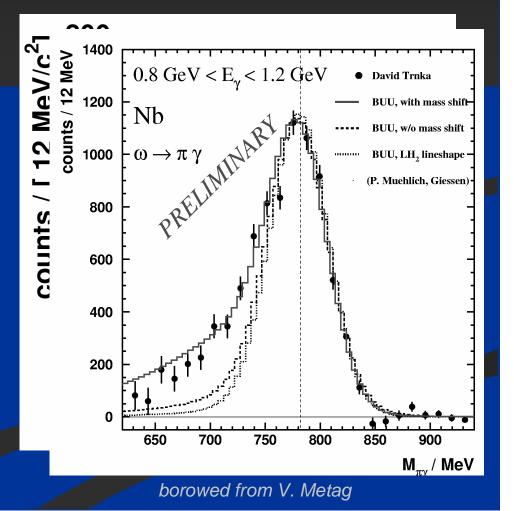
ω meson in the medium: experimental information

• KEK-PS E325: p-A reaction + $\omega \rightarrow e^+e^- decay$ M. Naruki et al., nucl-ex/0504016

50 times 2001 statistics
e⁺e⁻ mass resolution 8 MeV (ρ/ω) and 10 MeV (φ)
Yield excess below ω mass:
M_ν(ρ)/M_ν = 1 − k ρ/ρ₀, k ≈ 0.10 from fit (k = 0.10-0.22, Hatsuda, Lee, Shiomi '95)
No broadening is assumed
Actually, no broadening is favoured in the analysis

ω meson in the medium: experimental information

• CB-TAPS@ELSA Col.: nuclear ω photoproduction + $\omega \rightarrow \pi^0 \gamma$ decay


* $\pi^0 \gamma$ decay: much suppressed for ρ meson (10⁻²) \longrightarrow no overlap

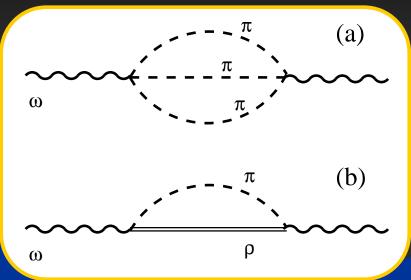
• Sizable enhancement of spectrum below M_{ω}

• Effect vanishes when increasing p_{ω} cuts

• Width dominated by exp. resolution (Γ_{ω} < 55 MeV at estimated ρ = 0.6 ρ_0)

BUU transport calculation incl. FSI, collisional broadening and explicit ΔM_{ω} proportional to density (-16% at ρ_0) P. Mühlich et al., Eur. Phys. J. A20 (2004) 499

ω meson in the medium: theoretical approaches


A simple calculation in a selfenergy approach

$$\mathcal{L}_{V\Phi}^{(3)} = \frac{i h}{4 f_{\pi}^{3}} \epsilon^{\mu\nu\alpha\beta} \operatorname{tr}(V_{\mu}\partial_{\nu}\Phi\partial_{\alpha}\Phi\partial_{\beta}\Phi) + \frac{g_{VVP}}{4 f_{\pi}} \epsilon^{\mu\nu\alpha\beta} \operatorname{tr}(\partial_{\mu}V_{\nu}V_{\alpha}\partial_{\beta}\Phi) ,$$

 $\rho\pi$ decay is about 90% of $\Gamma(\omega \rightarrow 3\pi)$

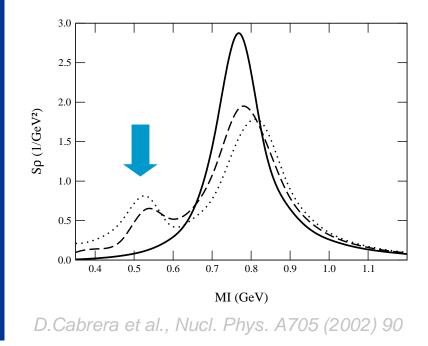
(from $\phi \rightarrow (\omega) \rightarrow 3\pi$ and radiative decays)

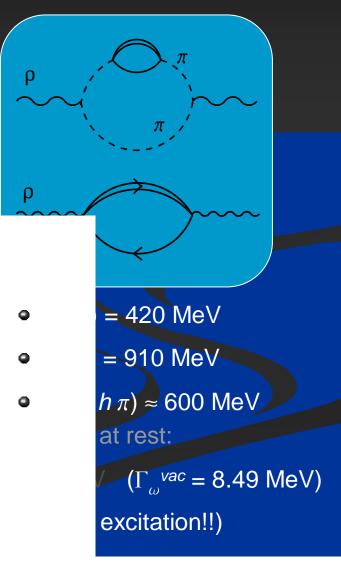
P. Jain et al., Phys. Rev. D37 (1988) 3252; F. Klingl et al., Z. Phys. A356 (1996) 193

Medium effects on intermediate mesons:

• 3π : plenty of phase space, pion attraction will not make a strong effect

• $\rho\pi$: not open at the physical ρ mass, only the *low energy* ρ *tail* is explored ($E \sim 500 \text{ MeV}, p \sim 200 \text{ MeV}$)


p spectral function enhanced in this region at finite nuclear density


ω meson in the medium: theoretical approaches

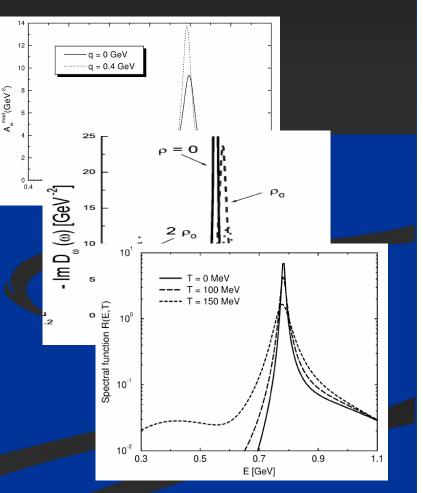
A simple calculation in a selfenergy approach

Several in-medium mechanisms could spread ρ spectral density to lower energies:

- $\blacksquare \pi$ selfenergy (ph, Δh)
- ρ coupling to *ph*, Δh states (for $p_{\rho} \neq 0$)
- Excitation of *Rh* states (ex. *N**(1520),...)

ω meson in the medium: theoretical approaches

Many other mechanisms have been studied


* $\omega N \rightarrow \pi N$, $\omega N \rightarrow \rho N \rightarrow [\pi \pi] N$ in a Chiral SU(3) Lagrangian approach: $\Delta \Gamma_{\omega} \approx 40$ MeV! F. Klingl et al. Nucl. Phys. A624 (1997) 527; A650 (1999) 299

ω coupling to several *Rh* states
 (*N**(1520)*h*, *N**(1650)*h*, ...) *M.* Post et al. Nucl.
 Phys. A688 (2001)808; *M.* Lutz et al Nucl. Phys.
 A706 (2002) 431

• Self-consistent determination of ρ and ω spectral functions *F. Riek et al., Nucl. Phys.* A740 (2004) 287

• Finite *T* effects (ex. $\omega \pi \rightarrow \pi \pi$, thermally excited pions) *R.* Rapp, Phys. Rev. C63 (2001) 054907; *R.* Schneider et al., Phys. Lett. B515 (2001) 89; *A.* Martell et al., Phys. Rev. C69 (2004) 065206

• QCD sum rules calculations S. Zschocke et al., Phys. Lett. B562 (2993) 57

ω meson in the medium: theo + exp

 Γ_{ω} expected to increase \approx one order of magnitude, the ω still keeping its resonant shape as a quasiparticle in the \leq nuclear medium

This should be observable as a (Adependent) clear loss of ω flux in a nuclear photoproduction experiment...

...well suited to provide COMPLEMENTARY information to the measure of the mass spectrum observable in vector meson decays

What is needed (from ϕ experience) ?

- Good control of coherent production
- Reliable calculations of ω properties at finite p_a

If some effect is observed...

- Clear evidence of medium effects on the ω meson (Γ_{ω})
- Test of ρ and p dependence of calculated ω nuclear potentials

Conclusions

 Much work has been carried out regarding the properties of vector mesons in dense and hot matter

• Narrow vector mesons (ϕ , ω) have recieved less attention, but very exciting experimental results have been found recently in production reactions in nuclei

ω meson properties

Sizable medium effects theoretically estimated

• Some effect experimentally observed in nuclear photoproduction + $\pi^0 \gamma$ decay by CB-TAPS/ELSA

• We suggest that measurement of loss of ω flux (and A-dependence) could provide complementary information (Γ_{ω})

Outlook and work in progress

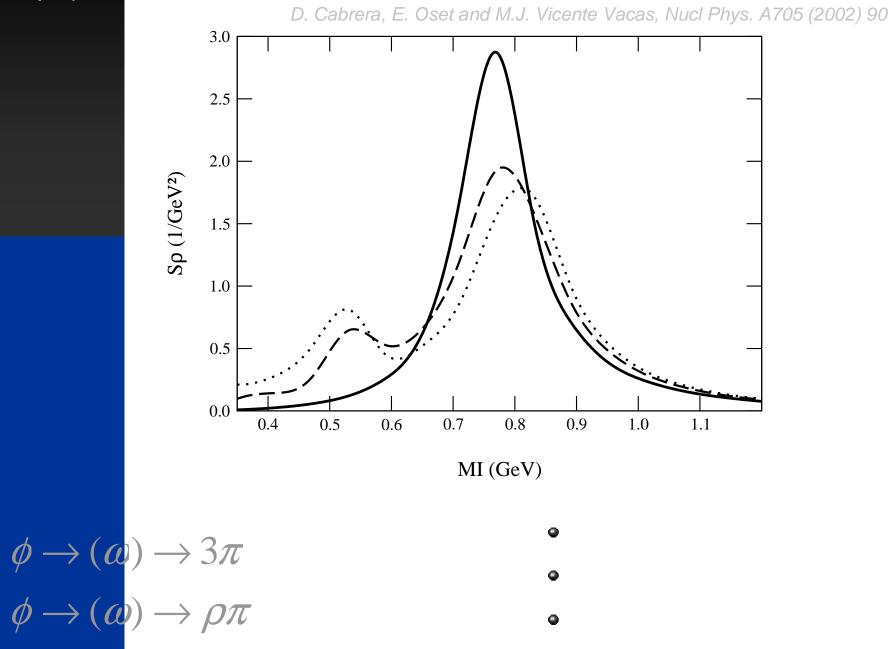
 ϕ meson selfenergy and nuclear ϕ photoproduction

• Calculate A dependence of loss of ϕ flux for different kaon-antikaon potentials (shallow-deep) _____ study sensitivity of P_{out}

• Study other possible effects leading to a flux reduction: $\phi \rightarrow 3\pi$ (small), quasielastic ϕN collisions (forward acceptance)

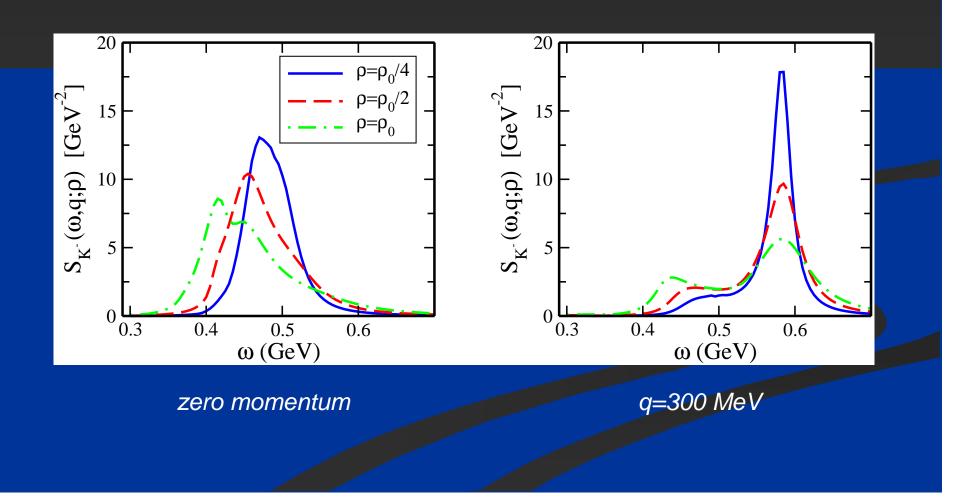
• Extend the model for finite temperature (application to HIC)

ω meson selfenergy


• Complete selfenergy calculation including pion cloud modifications, ρ selfenergy and coupling of ρ , ω to baryonic resonances (and finite T)

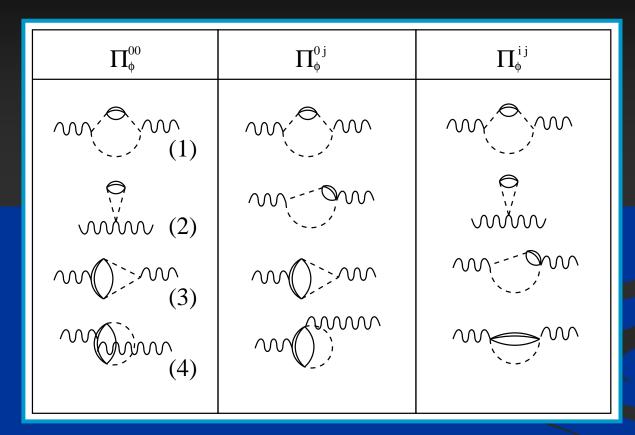
• Subthreshold coupling to $KK \longrightarrow$ additional open channels in the nuclear medium (+ 5 MeV)

• Calculation of P_{out} in ω nuclear photoproduction (analysis of exp. data ongoing)


Backup slides

ρ spectral function in nuclear matter (ρ at rest)

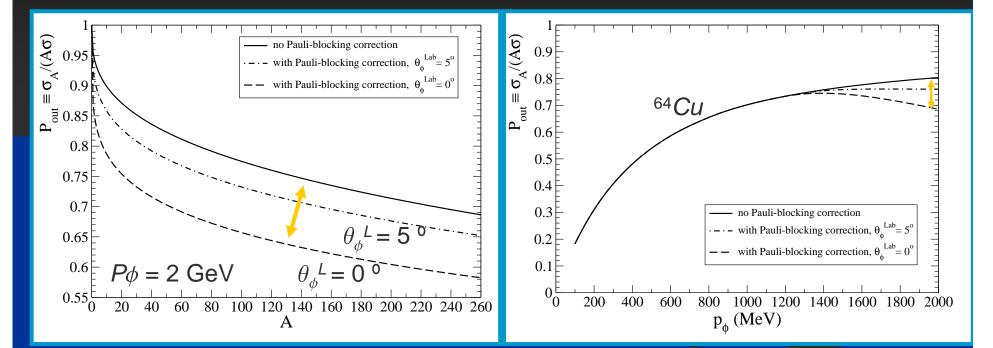
Antikaon spectral function for several nuclear densities


A. Ramos and E. Oset, Nucl.Phys. A 671 (2000) 481

 ϕ selfenergy from kaon loop and tadpole diagrams, in terms of the spectral functions of the kaon propagators

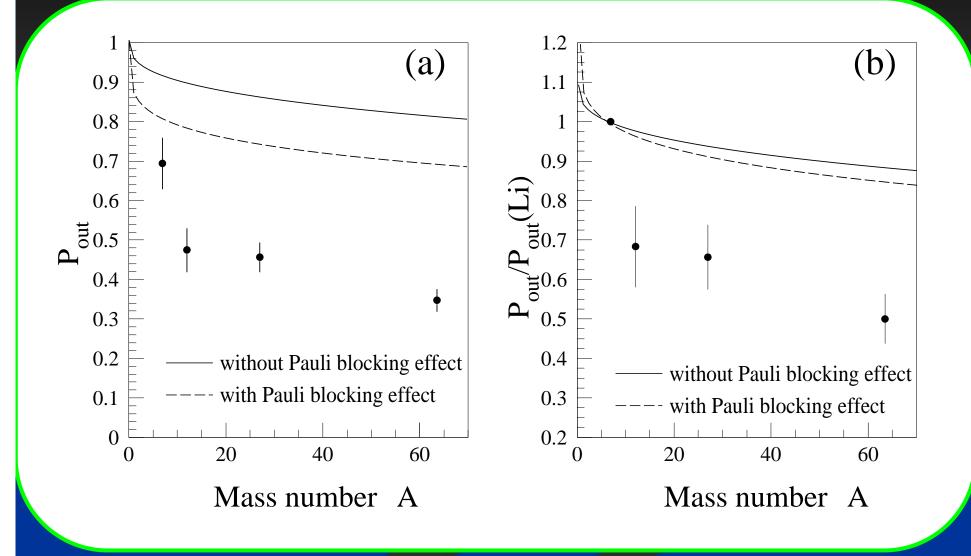
$$\begin{split} \Pi_{\phi}(P^{0};\rho) &= 2g_{\phi}^{2} \frac{1}{2\pi^{2}} \frac{4}{3} \int_{0}^{\infty} dq \, \vec{q}^{\,2} \Big\{ \frac{\vec{q}^{\,2}}{\widetilde{\omega}(q)} \int_{0}^{\infty} d\omega \frac{S_{\bar{K}}(\omega, |\vec{q}|; \rho) \left(\omega + \widetilde{\omega}(q)\right)}{(P^{0})^{2} - \left(\omega + \widetilde{\omega}(q)\right)^{2} + i\epsilon} \\ &+ \frac{3}{4} \Big[\int_{0}^{\infty} d\omega S_{\bar{K}}(\omega, |\vec{q}|; \rho) + \frac{1}{2\widetilde{\omega}(q)} \Big] \Big\} \end{split}$$

Vertex corrections and gauge invariance (II)



Detailed analysis of necessary diagrams to satisfy gauge invariance in a nonrealtivistic approximation of vertices involving baryons and baryon propagators

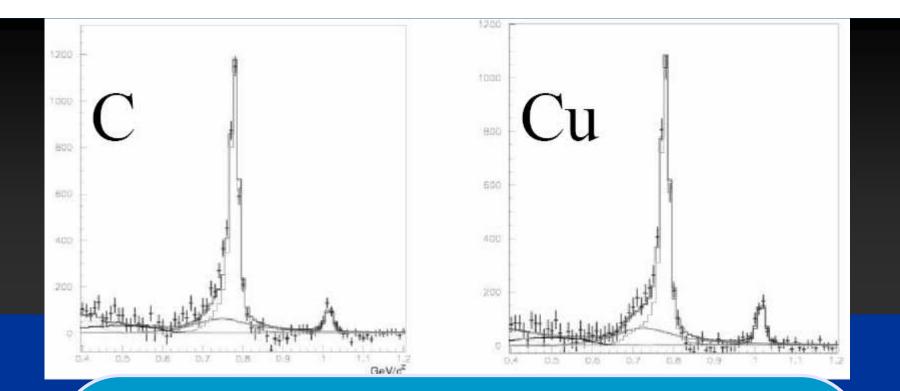
Inclusive nuclear ϕ photoproduction: results


Other nuclear effects: Pauli blocking and Fermi motion

• Pauli blocking of the final nucleon is important for high P_{ϕ} (small momentum transfer)

• ϕ photoproduction is forward peaked, thus actual effect is to be found somewhere in θ_{ϕ}^{L} < a few degrees

Inclusive nuclear ϕ photoproduction: experimental results



T. Ishikawa et al., Phys. Lett. B608 (2005) 215 LEPS Collaboration

Toy model again : Width broadning of ϕ ? Many theoretical predeictions ...

- Γ =22MeV, Δ m=0 at ρ = ρ_0 (Oset et.al,2001)
- Γ =30MeV, Δ m=8MeV at ρ = ρ_0 (Cabrera et.al, 2003)
- Toy model like ρ&ω, including width (=decay prob.) change
- Inside-nucleus decay (=at $\rho > 0.5 \rho_0$) probability for ϕ

 natural width (Γ=4.4Me) 	V) C	Cu	
 all our acceptances 	1 %	3%	
• slow ($\beta\gamma < 1.35$)	2 %	6%	
– Γ =30MeV at ρ = ρ_0			$\Gamma^*/\Gamma = 1 \pm 6 \ 0^*/0$
• all	5 %	18%	• $\Gamma^*/\Gamma_0 = 1 + 6 \rho^*/\rho_0$ 4.4 *7~30MeV at $\rho = \rho_0$)
• slow	9 %	32%	
Observation : N(excess)/(N(excess)+N(\phi))			- no theoretical basis
• all	(9+-7) %	(13+-7)%	
• slow	(15+-15) %	(25+-12)%	Chiral-05 05Feb16 S.Yokkaichi 27

Results from experiments measuring mass spectrum observable show some medium effects are there, BUT interpretation in terms of ΔM_V and / or $\Delta \Gamma_V$ still difficult

Sizable modifications are predicted

• ϕ , ω stay as quasiparticles in the medium

Introduction

* The study of vector meson properties could be useful to find evidence of a possible partial restoration of chiral symmetry at finite ρ , T

Particularly suited probes: electromagnetic decays (dileptons)

 ρ meson has been extensively studied, dilepton spectrum from HIC's may indicate a lowering of M_{ρ} or large increase of Γ_{ρ}

R. Rapp, J. Wambach, Adv. Nucl Phys. 25 (2000) 1

• Narrow vector mesons (ω , ϕ) have received comparatively less attention

Interesting theoretical problems associated!

Introduction

* The ϕ meson is an appropriate probe for <u>dynamics of vector mesons in</u> <u>nuclear matter</u>

- Isolated in the mass spectrum
- Changes of properties comparatively *larger* than other mesons

Experimental observation in principle easier

• ϕ properties in nuclear medium strongly related to the renormalization of kaon properties

• Kaon selfenergy

Variety of models, predict different kaon potentials Good reproduction of data (*K-atoms, HIC*)

Kaon condensation — astrophysical implications

Experimental information from \$\phi\$ decay
valuable info on kaon selfenergy

Introduction

Proposed reactions to test ϕ , ω properties in nuclear medium

AA, pA collisions $\pi^{-}p \rightarrow \phi n$ in nuclei $\gamma N \rightarrow \phi N$, ωN in nuclei Very recent analysis from p-A reaction, presented in Chiral'05 Experiments and Quark Matter '05 KEK-PS 🙂 Recent experimental data from nuclear inclusive ϕ LEPS \odot photoproduction reaction CB-TAPS@ELSA 🙂 Near future... Very recent experimental data from nuclear ω photoproduction HADES, CLAS (preliminary) reaction

φ meson: Outline

 ϕ meson mass and decay width in the nuclear medium – a selfenergy approach.

Experimental information: study of inclusive nuclear ϕ photoproduction.

D. Cabrera and M.J. Vicente Vacas, Phys. Rev C 67, 045203 (2003)

D. Cabrera, L. Roca, E. Oset, H. Toki and M.J. Vicente Vacas, Nucl. Phys. A 733 (2004) 130

Theoretical approaches to ϕ meson properties

\phi mass

Effective Lagrangian approach

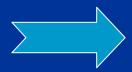
Weise et al.; Kuwabara and Hatsuda; Song; Bhatttachayya et al.

QCD sum rules

Asakawa and Ko; Kampfer et al.

ϕ decay width

Dropping of meson masses


Bhattacharyya et al.; Ko et al.; Shuryak et al.; Panda et al.

Collisional broadening by ϕ -baryon and ϕ -meson interactions

Smith and Haglin; Alzarez-Ruso and Koch

Modification of ϕ decay channels (ϕ selfenergy approach, kaon selfenergies)

Weise et al.; Ramos et al.

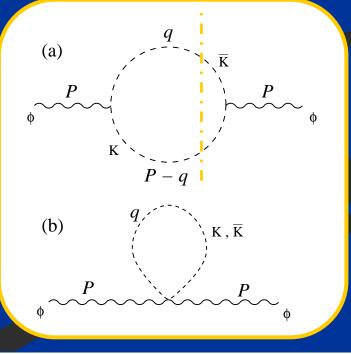
Sizable renormalization of ϕ width

and small mass shift in nuclear medium

ϕ meson selfenergy in vacuum

* Interested in the ϕ to \overline{KK} coupling \longrightarrow main ϕ decay channel in vacuum, BR 85% (ignore other contributions).

φ KK Lagrangian in a gauge vector representation


J. Schechter et al. 1988 W. Weise et al. 1998

 $\mathcal{L}_{\phi,kaons} = -ig_{\phi}\phi_{\mu}(K^{-}\partial^{\mu}K^{+} - K^{+}\partial^{\mu}K^{-} + \bar{K}^{0}\partial^{\mu}K^{0} - K^{0}\partial^{\mu}\bar{K}^{0})$ $+ g_{\phi}^{2}\phi_{\mu}\phi^{\mu}(K^{-}K^{+} + \bar{K}^{0}K^{0}) ,$

Gives rise to a ϕ selfenergy built from:

- KK loop diagram
- Kaon tadpole diagram

 $\operatorname{Im} \Pi_{\phi} \to \Gamma_{\phi} = f(g_{\phi})$ $\Gamma_{\phi \to K^{+}K^{-}}^{\exp} \to g_{\phi} = 4.57$

Nuclear medium effects

We modify the kaon propagators with selfenergy accounting for interactions with the nuclear medium

$$\Pi_{\overline{K}(K)}(q^0, \vec{q}; \rho)$$

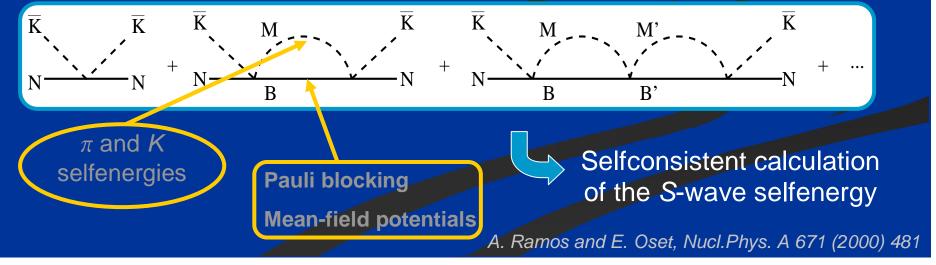
$$\Pi_{\phi}^{ij}(P^{0};\rho) = \delta^{ij}i2g_{\phi}^{2}\frac{4}{3}\int \frac{d^{4}q}{(2\pi)^{4}}\vec{q}^{2}D_{K}(P-q;\rho)D_{\bar{K}}(q;\rho)$$
$$+\delta^{ij}i2g_{\phi}^{2}\left\{\int \frac{d^{4}q}{(2\pi)^{4}}D_{\bar{K}}(q;\rho) + \int \frac{d^{4}q}{(2\pi)^{4}}D_{K}(q;\rho)\right\}$$

(c)

(b)

$$D_{\overline{K}(K)}(q) \implies D_{\overline{K}(K)}(q^0, \vec{q}; \rho)$$

Kaon selfenergy: S-wave

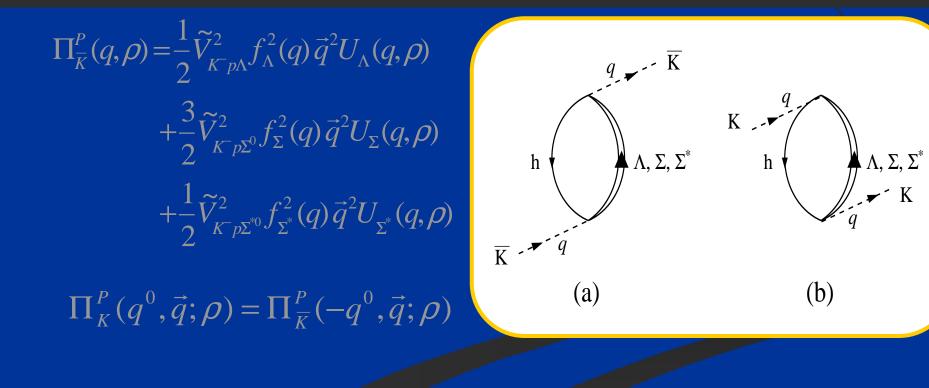

Kaon and anti-kaon interactions with nucleons are rather different we treat them separately

* KN: smooth at low energies, since there are not S=1 resonances (?) We use $t \rho$ approximation $\Pi_{K^+} = \frac{1}{2}(t_{K^+p} + t_{K^+n})\rho = 0.13 m_K^2 \frac{\rho}{\rho_0}$

N. Kaiser, P.B. Siegel and W. Weise, Nucl. Phys. A 594 (1995) 325

• *KN:* strongly dominated by the excitation of *sub-threshold* Λ (1405). Chiral unitary model in coupled channels for *S-wave KN* scattering

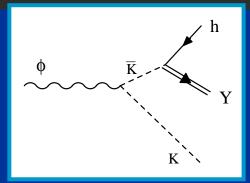
E. Oset and A. Ramos, Nucl. Phys. A 635 (1998) 99



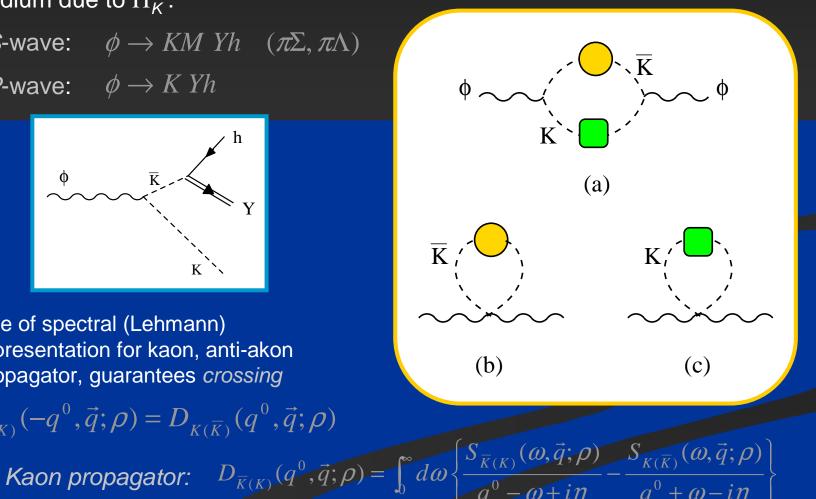
Kaon selfenergy: P-wave

 $\Sigma^* = \Sigma^*$ (1385) Built from Λh , Σh and $\Sigma^* h$ excitations, found to be an important source of ϕ renormalization in a nuclear medium.

Klingl, Waas and Weise 98; Oset and Ramos 01

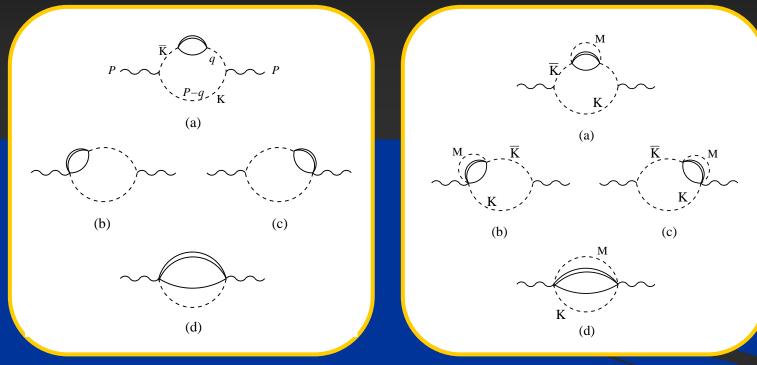

KNY interaction from lowest order chiral Lagrangian coupling pseudoscalar meson and 1/2⁺ baryon octets.

ϕ meson selfenergy in the medium

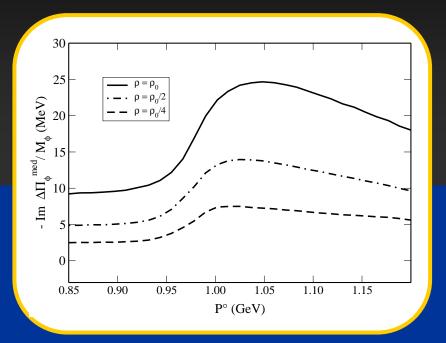

 ϕ decay channels which open in the medium due to Π_{κ} :

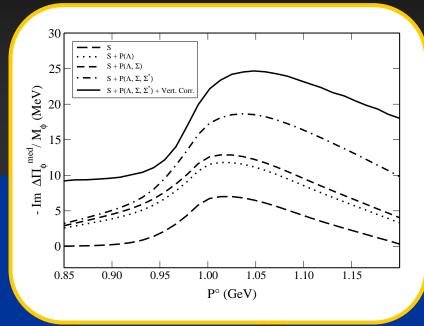
- S-wave: $\phi \to KM Yh \quad (\pi\Sigma, \pi\Lambda)$
- *P*-wave: $\phi \to K Yh$

Use of spectral (Lehmann) representation for kaon, anti-akon propagator, guarantees crossing


 $D_{\overline{K}(K)}(-q^0, \vec{q}; \rho) = D_{K(\overline{K})}(q^0, \vec{q}; \rho)$

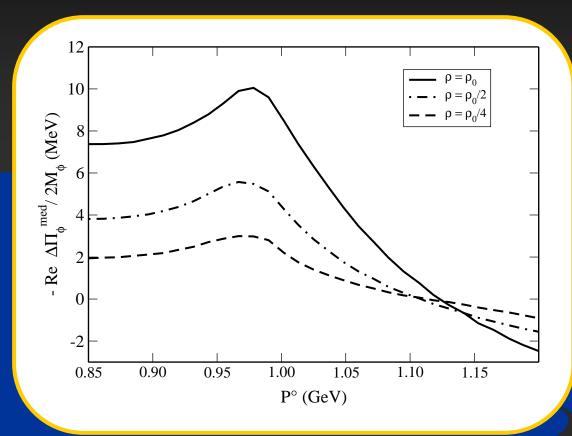
Vertex corrections and gauge invariance


Herrmann, Friman and Noremberg 93; Chanfray and Schuck 93


P- and S-wave kaon selfenergy insertions and realted vertex corrections:

- (a) included by using the renormalized kaon & antikaon propagators
- (b-d) generated by vertex corrections
- Contact vertices: can be obtained by imposing W.I.

Results: ϕ mass and decay width in the nuclear medium

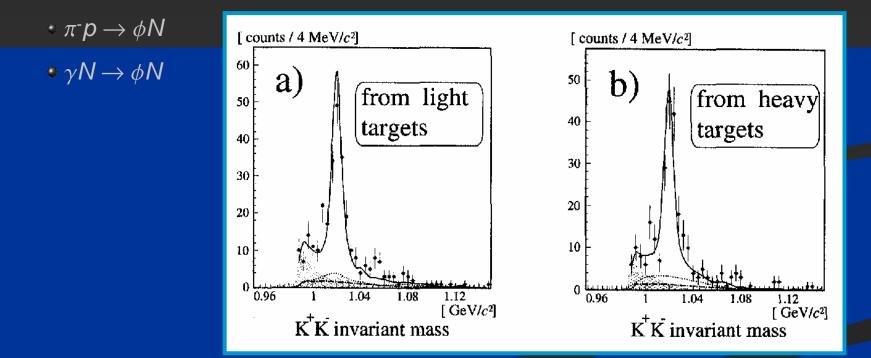

• ϕ width grows considerably with the density: $P_{\phi} \approx 30$ MeV, $\rho = \rho_0$

F. Klingl, T. Waas and W. Weise, Phys. Lett. B 431 (1998) 254;

E. Oset and A. Ramos, Nucl. Phys. A 679 (2001) 616

- Sizeable energy dependence due to the $\phi \to K \Sigma^* h$ channel (thres. ~940 MeV)
- K S-wave: mildly attractive contribution, compensates partly K repulsion
- *K P*-wave: small contribution from Σ , sizeable from Λ and Σ^* excitations
- Vertex corrections: further enhancement of the total width

Results: ϕ mass and decay width in the nuclear medium (II)


• Real part of ϕ selfenergy: very small, attractive up to 1.1 GeV

• ϕ mass change: ~(-8) MeV at $\rho = \rho_0$

Experimental information on ϕ properties in the nuclear medium

Several experimental proposals to observe changes in the ϕ properties in a nuclear medium:

• HIC's (*p-A, A-A* collisions)

• Results from p-A reaction: KEK-PS E325, K. Ozawa et al., Nucl. Phys. A 698 (2002) 535c

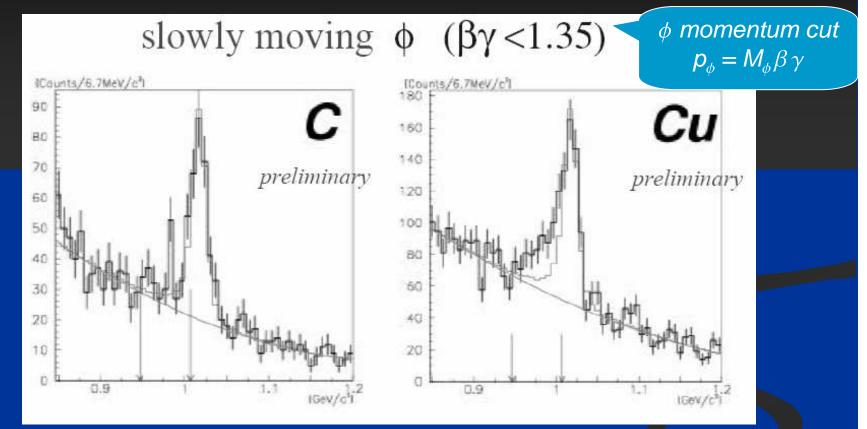
Experimental information on ϕ properties in the nuclear medium

* Results from p-A reaction: KEK-PS E325, K. Ozawa et al., Nucl. Phys. A 698 (2002) 535c

• HIC's ²⁸Si + ¹⁹⁶Au: BNL-AGS E802, Y. Akiba et al., Phys. Rev. Lett. 96 (1996) 2021

Au + Au: PHENIX Col., Adler et al., nucl-ex/0410012

* $\gamma A \rightarrow K^+K^-X$: LEPS, T. Ishikawa et al., Phys. Lett. B608 (2005) 215


Problems:

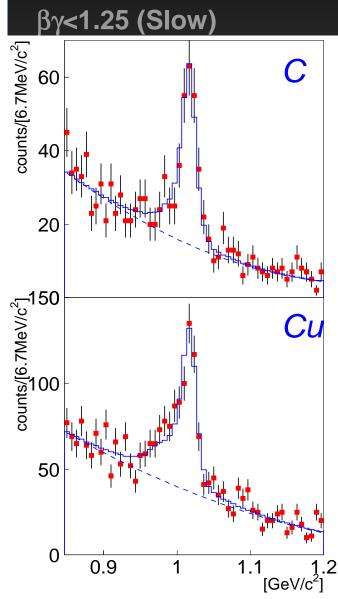
- Long ϕ lifetime: ϕ decays outside the nuclear medium
- ϕ is produced with high P_{ϕ}
- Kinematical cuts to isolate small- P_{ϕ} events poor statistics
- Distortion in K+K- distribution (Coulomb interaction may bind K- in nucleus)

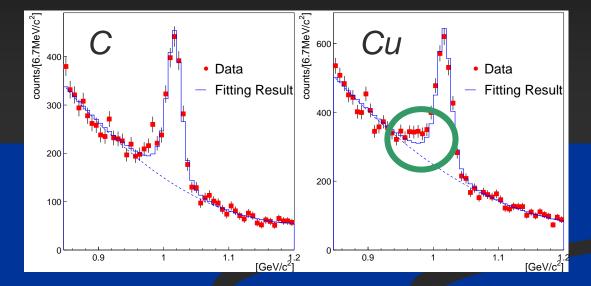
P. Muhlich, T. Falter, C. Greiner, J. Lehr, M. Post and U. Mosel, Phys. Rev. C 67 (2003) 024605

Dilepton spectrum from p-A reaction: KEK-PS E325,

presented at Chiral'05, 16 Feb 2005, RIKEN, Japan

borrowed from S. Yokkaichi


• Toy model with -16% mass shift at ρ_0 . Also $\Gamma_{\phi}(\rho) = (1+6 \rho/\rho_0) - \Gamma_{\phi}^{\text{vac}}$ is used in analysis to understand *dilepton yield* excess


• If only $\Delta\Gamma_{\phi}$, symmetric effect expected

K⁺K⁻ analysis on going...

Dilepton spectrum from p-A reaction: KEK-PS E325,

presented at QM '05, Aug 4-9, Budapest

borrowed from R. Muto

Low energy tail cannot be fit (bkgnd + BW)
M_φ(ρ) = (1- 0.04 ρ/ρ₀) M_φ^{vac} → ΔM_φ(ρ₀) ≈ -40 MeV
Γ_φ(ρ) = (1+ 10 ρ/ρ₀) Γ_φ^{vac} → Γ_φ(ρ) ≈ 44 MeV
No momentum dependence (p_φ ~ 2 GeV)

 $M_{\phi}(\rho)$ Hatsuda et al.; $\Gamma_{\phi}(\rho)$ Weise et al.

Study of inclusive nuclear ϕ photoproduction

Proposal: observation of loss of ϕ flux due to nuclear effects and its *A* dependence

• No need to cut ϕ phase space _____

better statistics

• A dependence of ϕ flux can be related to the ϕ decay width in the nuclear medium

But: Most of the produced ϕ 's carry a high momentum

Experiment: Spring8/Osaka LEPS (γ, ϕ) with $E_{\gamma} \in [1.5-2.4]$ GeV $P_{\phi} \sim 1.8$ GeV

Study of inclusive nuclear ϕ photoproduction

 ϕ flux and ϕ decay width:

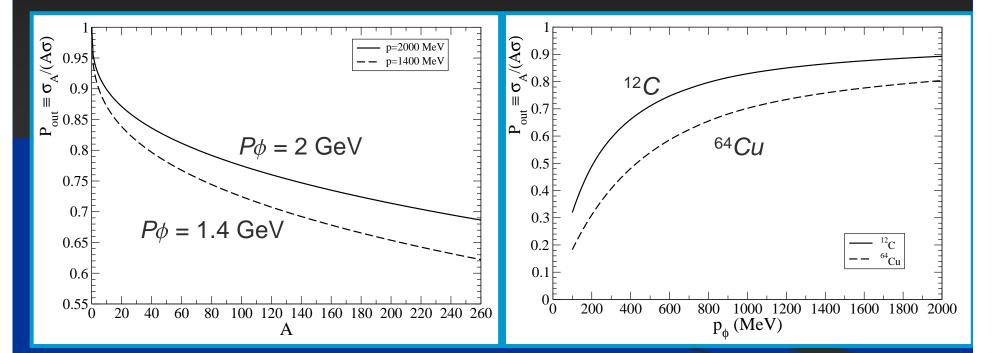
$$\frac{\frac{dP}{dt}}{\frac{dP}{dt}} = -\operatorname{Im}\frac{\frac{\Pi_{\phi}}{2\omega}}{\frac{dP}{dt}} \implies \Gamma_{\phi} = -\frac{\operatorname{Im}\Pi_{\phi}}{\omega} \equiv \frac{dP}{dt}$$
$$\frac{\frac{dP}{dt}}{\frac{dP}{dt}} = \frac{\frac{dP}{v \, dt}}{\frac{P_{\phi}}{\omega} \, dt} = -\frac{\operatorname{Im}\Pi_{\phi}}{\frac{P_{\phi}}{\omega}}$$

Nuclear cross section for inclusive nuclear ϕ photoproduction:

$$\frac{d\sigma_A}{d\Omega} = \int d^3 \vec{r} \rho(r) \frac{d\sigma}{d\Omega} e^{-\int_0^\infty dl \frac{-1}{P} \operatorname{Im}\Pi_\phi(P^0, P; \rho(r'))}$$

Absorption factor

k


 ϕ survival probability:

$$\mathcal{P}_{out} \equiv \frac{\sigma_A}{A\sigma} = \frac{1}{A} \int d^3 \vec{r} \rho(r) \ e^{\int_0^\infty dl \frac{1}{P} \operatorname{Im}\Pi_\phi(P^0, P; \rho(r'))}$$

Inclusive nuclear ϕ photoproduction: results

A dependence

Pø dependence

• Clear loss of ϕ flux: enhanced effect for small P_{ϕ} and heavy nuclei

• $E_{\gamma} = 1.6 \text{ GeV} \rightarrow P_{\phi} \approx 1000 \text{ MeV}$ in fwd direction $\rightarrow P_{\text{out}} \sim 0.65$ for ${}^{64}Cu$, and smaller for heavier nuclei

Inclusive nuclear ϕ photoproduction: experimental results

1.2 (b) (a) 0.9 1.1 0.8 0.7 LEPS out (Li) 0.6 Collaboration, $\mathbf{A}_{0}^{\mathrm{to}\,0.5}$ T. Ishikawa et al., 0.4 Д 0.3 Phys. Lett. B608 0.2 0.4 without Pauli blocking effect without Pauli blocking effect (2005) 215,with Pauli blocking effect 0.1 0.3 with Pauli blocking effect 0.2 0 20 60 nucl-ex/0411016 Mass number A Mass number A

• Separation of the coherent ϕ photoproduction is important, particularly for light nuclei

- Stronger effect than theoretically predicted
- Calculation agrees with A-dependence (normalize to C)
- Other possible sources of ϕN interactions (further flux reduction)

Ex: $\phi \rightarrow 3\pi$ (pion selfenergy!), quasi-elastic collisions