
Viscous Relativistic Hydrodynamics in
Heavy Ion Collisions

Kevin Dusling
Derek Teaney



Contents:
 Introduction

 Success and Limitations of Ideal Hydro
 Estimates of Viscosity in QGP
 Applicability of Hydrodynamics

 Relativistic Viscous Hydro
 General difficulties with 1st order theories
 GENERIC

 Results
 1+1D Bjorken Expansion

 Hadron Spectra
 1+2D Bjorken expansion

 “elliptic flow”

 Conclusions
 Important effects for HIC



Nucl-ex/0410003

Proton                                      Pion

Success of Ideal Hydro:
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Breakdown of Hydro:
  Deviations from hydro seen at:

 Large pT

 Peripheral collisions
 Collisions at lower energies
 Forward rapidities

 V2 reflects QGP expansion state and partly on phase transition

 V2 key to understanding QGP viscosity -- need 2D simulations



 Validity of Ideal hydrodynamics:

 Define sound attenuation length:

 For ideal hydro to work mean free path should less than expansion rate

Viscous Corrections:
 Consider viscous boost invariant expansion:
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Estimates of η/s in QGP:
 pQGP - Kinetic Theory
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 N=4 SUSY YM (Policastro, Son, Starinets) (Gubser, Klebanov, Tseytlin)



! 

"

#

$ 

% 
& 
' 

( 
) 
MD

* 0.45
1

#T

Plasma Coupling Param

 MD Simulations of cQGP
(Gelman, Shuryak, Zahed)
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 Phenomenology
(Gyulassy, Molnar)
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Evolution:
 Value of viscosity uncertain:

 At time τ0

 How does Γ/τ  evolve?

Look at Bjorken expansion…

! 

T
0
" 300 MeV and #

0
"1 fm

! 

"

#
$ 0.175

! 

"

s
= 0.2



 Scale Invariant Cross section:

 Constant Cross section:

 System more likely to thermalize when η∝T3

 Large opacity needed in GM an artifact of fixed scale

Evolution:
 1D Bjorken Expansion:
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Relativistic Navier Stokes Equations (RNSE)

 RNS stress tensor changes instantly

 There are a number of models which relax to RNSE

 When hydrodynamics is valid these models all agree with RNSE
 (L. Lindbolm)
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 RNSE difficult to solve
 unstable modes propagate faster then speed of light
 Cannot predict future evolution of initial fluid states (Hiscock, Lindbolm)



Typical Relaxation Process: Diffusion
 Violates causality
 Breaks sum rules associated with current conservation
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 Continuity:

 Ficks Law:
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 Spectral Density from ordinary Diffusion Equation

 Spectral Density in Relaxation Time Approx.

Typical Relaxation Process: Diffusion
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 Have short and long time parameters
 Long Time: D

 Short Time:
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In General:
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Analogous set of equations for viscous hydrodynamics:
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ζ: bulk viscosity
η: shear viscosity
κ: thermal conductivity

This is second order (Truncated) Israel-Stewart:

! 

T
µ" = #uµ

u
$
% (p +&)'µ$ + (

µ$

N
µ = nuµ + 'µ$

v$

Same Hydro Equations:

! 

"µT
µ# = 0

"µN
µ = 0



 Same principal as IS

 For Details: H. C. Öttinger, Physica A 254 (1998) 433.

 Why use GENERIC Structure?
 Numerically easier to implement
 Not necessarily restricted to small deviations from equilibrium

 Introduce tensor which evolves in time as:

 This leads to its rapid relaxation to velocity gradients:

 For small relaxation times:

GENERIC Formalism:
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 The energy-momentum tensor in the LRF is given by:

 Assuming a specific thermodynamic relation of the form:

 For small deviations from equilibrium:

 Limit c for larger deviations from equilibrium:

Generic Formalism:
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 Bjorken Expansion: 1st order viscous hydro

 Bjorken Expansion: Relaxation time approximation

 In any relaxation scheme have two parameters and IC:

Solution to Relaxation Time Equations:
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Solution to Relaxation Time Equations:
 Bjorken expansion with no transverse flow

NS:

 IS:

GENERIC:
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Solution to Relaxation Time Equations:
 Can’t believe hydrodynamics too early:
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Solution to Relaxation Time Equations:
 Can’t believe hydrodynamics when viscosity

becomes too large:
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Expect agreement between NS, IS, Generic:

 Hydro not started too early

 When viscosity is small enough

 Hydro not run too late
 When transverse flow included gradients become large at larger radii

 When viscous terms become large models disagree with each other and NS

Freezeout is signaled by the equations

! 

R
"1 =

# µ$# µ$

p
> 0.5

! 

T
ij "# $ iv j

+ $ j
v
i %
2

3
& ij$rv

r
' 

( 
) 

* 

+ 
, 



 Assume specific form for f close to equilibrium:

 Subst. into Boltzmann eqn gives eqn for η:

 Starting point point for variational approach:

 A(p)=const agrees with exact results within 1%:

 Definition of pressure tensor:

 Solving for A from Pxy above gives:                          and resulting form of f is:

Viscous Corrections to Spectra:
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 Viscosity changes the thermal distribution function:

 The viscous corrections grow with momentum:

 Include viscous correction when computing freezeout integrals:

Viscous Corrections to Spectra:
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1+1D Bjorken Expansion:

 Have algebraic system of equations for c
 2nd Order RK scheme by L. Pareschi: can handle stiff and un-stiff source terms

 Steps:
 IC: Mechanical force tensor takes equilibrium values at τ0

 Freezeout signaled by equations when viscous terms is about half the pressure
 Compute Spectra

 Now some results….



Result: 1+1D Bjorken

 Viscous solution does less longitudinal work

 The transverse pressure is larger leading to large transverse velocities

 These larger velocities result in a quicker reduction in energy density



Temperatures:
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Viscous corrections to not change ideal solution much



Freezeout:
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 Freezeout surface is not an isotherm



Particle Spectra:

η/s=0.2
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 1.  Modification to freezeout surface:

 2.  Viscous correction to distribution function:

! 

f " # " f
0

+ p
i
p
j $iv j

! 

pT "1.5 GeV

! 

"dN

dN
0



1+2D Bjorken Expansion:

Ideal Hydro Equations

Relaxation Equations:



1+2D Bjorken Expansion: Au-Au (b=6 fm)
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Transverse Flow:
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Anisotropy:
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”Elliptic Flow”
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Conclusions / Summary:

 Progress being made with Viscous Hydro
 Much more to be done

 Viscous effects in HIC
 Ideal hydro solution not modified significantly
 Signals the boundary of applicability

 Tells us where to believe ideal hydro
 Hope to constrain viscosity from v2

 Viscous effects in general
 Needs careful implementation

 Viscous corrections may become large

 HIC great testing ground for understanding viscous hydro
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Evolution
 1D Bjorken Expansion
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 Scale Invariant Cross section:

 Constant Cross section:



Solution to Relaxation Time Equations:
 Relaxation time does not change solution much if

viscous corrections are small:

! 

"

s
= 0.3

! 

"

s
= 0.1

τR=2 τR
τR = τR
τR = 0.5 τR



Another Look at Bjorken Expansion
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 Different IC did not effect Generic Solution
 IS now gives reasonable result but this is not the IC we really want.
 Again R becomes large at large radii when transverse flow present

and varying IC won’t fix this.



Another Look at Bjorken Expansion
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 Viscous corrections are too large in NS and IS
 Limiting c in Generic keeps viscous corrections manageable
 When including transverse flow Vis. Corrections also grow at large R


