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Success of Ideal Hydro:
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Breakdown of Hydro:
  Deviations from hydro seen at:

 Large pT

 Peripheral collisions
 Collisions at lower energies
 Forward rapidities

 V2 reflects QGP expansion state and partly on phase transition

 V2 key to understanding QGP viscosity -- need 2D simulations



 Validity of Ideal hydrodynamics:

 Define sound attenuation length:

 For ideal hydro to work mean free path should less than expansion rate

Viscous Corrections:
 Consider viscous boost invariant expansion:
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Estimates of η/s in QGP:
 pQGP - Kinetic Theory
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 N=4 SUSY YM (Policastro, Son, Starinets) (Gubser, Klebanov, Tseytlin)
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 MD Simulations of cQGP
(Gelman, Shuryak, Zahed)
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Evolution:
 Value of viscosity uncertain:

 At time τ0

 How does Γ/τ  evolve?

Look at Bjorken expansion…
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 Scale Invariant Cross section:

 Constant Cross section:

 System more likely to thermalize when η∝T3

 Large opacity needed in GM an artifact of fixed scale

Evolution:
 1D Bjorken Expansion:
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Relativistic Navier Stokes Equations (RNSE)

 RNS stress tensor changes instantly

 There are a number of models which relax to RNSE

 When hydrodynamics is valid these models all agree with RNSE
 (L. Lindbolm)
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 RNSE difficult to solve
 unstable modes propagate faster then speed of light
 Cannot predict future evolution of initial fluid states (Hiscock, Lindbolm)



Typical Relaxation Process: Diffusion
 Violates causality
 Breaks sum rules associated with current conservation
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 Continuity:

 Ficks Law:
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 Spectral Density from ordinary Diffusion Equation

 Spectral Density in Relaxation Time Approx.

Typical Relaxation Process: Diffusion
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 Have short and long time parameters
 Long Time: D

 Short Time:
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In General:
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Analogous set of equations for viscous hydrodynamics:
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ζ: bulk viscosity
η: shear viscosity
κ: thermal conductivity

This is second order (Truncated) Israel-Stewart:
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 Same principal as IS

 For Details: H. C. Öttinger, Physica A 254 (1998) 433.

 Why use GENERIC Structure?
 Numerically easier to implement
 Not necessarily restricted to small deviations from equilibrium

 Introduce tensor which evolves in time as:

 This leads to its rapid relaxation to velocity gradients:

 For small relaxation times:

GENERIC Formalism:
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 The energy-momentum tensor in the LRF is given by:

 Assuming a specific thermodynamic relation of the form:

 For small deviations from equilibrium:

 Limit c for larger deviations from equilibrium:

Generic Formalism:
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 Bjorken Expansion: 1st order viscous hydro

 Bjorken Expansion: Relaxation time approximation

 In any relaxation scheme have two parameters and IC:

Solution to Relaxation Time Equations:
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Solution to Relaxation Time Equations:
 Bjorken expansion with no transverse flow

NS:

 IS:

GENERIC:
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Solution to Relaxation Time Equations:
 Can’t believe hydrodynamics too early:
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Solution to Relaxation Time Equations:
 Can’t believe hydrodynamics when viscosity

becomes too large:
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Expect agreement between NS, IS, Generic:

 Hydro not started too early

 When viscosity is small enough

 Hydro not run too late
 When transverse flow included gradients become large at larger radii

 When viscous terms become large models disagree with each other and NS

Freezeout is signaled by the equations
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 Assume specific form for f close to equilibrium:

 Subst. into Boltzmann eqn gives eqn for η:

 Starting point point for variational approach:

 A(p)=const agrees with exact results within 1%:

 Definition of pressure tensor:

 Solving for A from Pxy above gives:                          and resulting form of f is:

Viscous Corrections to Spectra:
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 Viscosity changes the thermal distribution function:

 The viscous corrections grow with momentum:

 Include viscous correction when computing freezeout integrals:

Viscous Corrections to Spectra:
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1+1D Bjorken Expansion:

 Have algebraic system of equations for c
 2nd Order RK scheme by L. Pareschi: can handle stiff and un-stiff source terms

 Steps:
 IC: Mechanical force tensor takes equilibrium values at τ0

 Freezeout signaled by equations when viscous terms is about half the pressure
 Compute Spectra

 Now some results….



Result: 1+1D Bjorken

 Viscous solution does less longitudinal work

 The transverse pressure is larger leading to large transverse velocities

 These larger velocities result in a quicker reduction in energy density



Temperatures:

100

150

200

250
300
350
(MeV)

vT = 0.1    0.3         0.5              0.7

Viscous corrections to not change ideal solution much



Freezeout:
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Particle Spectra:

η/s=0.2
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 1.  Modification to freezeout surface:

 2.  Viscous correction to distribution function:
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1+2D Bjorken Expansion:

Ideal Hydro Equations

Relaxation Equations:



1+2D Bjorken Expansion: Au-Au (b=6 fm)
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Transverse Flow:
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Anisotropy:
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”Elliptic Flow”
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Conclusions / Summary:

 Progress being made with Viscous Hydro
 Much more to be done

 Viscous effects in HIC
 Ideal hydro solution not modified significantly
 Signals the boundary of applicability

 Tells us where to believe ideal hydro
 Hope to constrain viscosity from v2

 Viscous effects in general
 Needs careful implementation

 Viscous corrections may become large

 HIC great testing ground for understanding viscous hydro
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Evolution
 1D Bjorken Expansion
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 Scale Invariant Cross section:

 Constant Cross section:



Solution to Relaxation Time Equations:
 Relaxation time does not change solution much if

viscous corrections are small:
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Another Look at Bjorken Expansion
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 Different IC did not effect Generic Solution
 IS now gives reasonable result but this is not the IC we really want.
 Again R becomes large at large radii when transverse flow present

and varying IC won’t fix this.



Another Look at Bjorken Expansion
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 Viscous corrections are too large in NS and IS
 Limiting c in Generic keeps viscous corrections manageable
 When including transverse flow Vis. Corrections also grow at large R


