High Precision half-life measurement of 21Na

R.S. Behling, B. Fenker, J.C. Hardy, V.E. Iacob, M. Mehlman, D. Melconian, H.I. Park, P.D. Shidling, and B.T. Roeder

A review of all $T=1/2$ mirror β decays [1] indicates that 21Na is one of the best candidates from this group for testing the standard model. The total uncertainty in the ft value of 21Na was dominated by the half-life. So, half-life measurements were carried out recently by two different groups [2,3] unfortunately with inconsistent results. We have performed a precise half-life measurement for 21Na aimed at resolving this discrepancy.

21Na was produced via the $p(^{22}$Ne, $2n)^{21}$Na reaction in inverse kinematic at a primary beam energy of 25 MeV/u. The Momentum Achromat Recoil Spectrometer (MARS) was used to produce a secondary beam of 21Na with a purity of 99.9%. Fig. 1a shows typical two-dimensional plot of energy-loss vs position as obtained with the 16-strip position-sensitive silicon detector (PSSD) in the MARS focal plane. The secondary beam exited the vacuum system through a Kapton foil and then passed through a thin plastic scintillator, a series of Al degraders and eventually implanted in the center of an Aluminized Mylar tape. In repeated cycles, the fast-tape transport system quickly transported the sample to a well shielded location, placing it in the center of a 4π proportional gas counter where β activity was recorded for about 20 half-lives. The total data set was divided into 21 runs with different settings of the experimental parameters: bias voltage, discriminator threshold and dominant dead-times. Each cycle was dead-time corrected and the cycles from a given run were summed and fit using the Levenberg-Marquardt χ^2 minimization algorithm. The fit function consisted of one exponential corresponding to the decay of 21Na plus a constant background. The decay curve observed with the summed fit overlayed is shown in Fig. 1b.

![FIG. 1. (a) On the left, two dimensional plot of energy-loss versus position in the PSSD at the MARS focal plane. (b) On the right, typical dead-time corrected summed decay curve obtained from a single run with residuals. The reduced chi-square of the fit is 1.10.](image)

Our final result for the 21Na half-life is $t_{1/2} = 22.4615 \pm 0.0039 \text{ (stat)} \pm 0.00015 \text{ (syst)} \text{ s}$ [4]. Our result strongly disfavors the half-life measured by Grinyer et al. [2] but does not fully agree with Finlay et
al. [3] either. It should be noted that the uncertainty in our measurement is dominated by statistics, whereas the total uncertainty in the two recent measurements [2,3] is dominated by systematics. In any case, the new world average of the ^{21}Na half-life is increased by 0.0048 s and has an uncertainty reduced by a factor of 1.5. The new f_t value is now limited in precision by the 95.235(69)% ground state branching ratio. More important still, the uncertainty in V_{ud} is dominated by the ±1% uncertainty associated with the value of ρ, which derives from a correlation measurement [5].