Characterization of ParTI Phoswiches Using Charged Pion Beams

E. Churchmana,b, A. Zarrellaa, M. Youngsa, S. Yennelloa

aCyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

bDepartment of Physics, Texas Lutheran University, Seguin, Texas 78155, USA
Motivation and Background

- Partial Truncated Icosahedron (ParTI) detector array consists of phoswiches and is designed to measure charged pions (π) emitted in pionic fusion reactions.
- Pulse shape discrimination (PSD) particle identification (PID) can be achieved for light charged particles using fast vs. slow pulse shape discrimination.
- π also identified by the characteristic decay pulse of their muon (μ) daughters.
- 4 phoswiches at PSI
 - π^+, π^-, and proton beams.
The ParTI Array

- ≈ 9” diameter
- 15 phoswiches
 - Each with own frame and angled tabs

A. Zarrella, et. al, *Science Direct*, awaiting publication
Phoswiches

- Phoswich – 2 scintillating components, PMT
 - EJ-212 scintillating plastic
 - Fast response
 - CsI(Tl) crystal
 - Slow response
- Sensitive to charged and neutral particles
 - PID by energy deposition in 2 components

A. Zarrella, et. al, Science Direct, awaiting publication
Particles and Phoswiches

1) Fast plastic (red)
2) Slow CsI(Tl) (green)
3) Light Guide (blue)
4) PMT (grey)
5) Particle from reaction (black)
6) Photons emitted from scintillators (white)
Fast and Slow Integration – How it works

• Energy deposited by particles
 • Photon response
 • Photons converted to cascade of e+/-
 • Voltage generated on PMT
 • Converted to counts of photons/time

• Each pulse has 2 regions
 • Fast (red)
 • Slow (green)

• Integrate area under each region
• Yields PID lines
 • Based on relative energy lost
 • Photons produced proportional to energy deposit
 • Energy deposited unique to particle
• Implemented in place of a singles trigger
• Trigger occurs only on possible π-candidate events
 • Only if CFD is triggered 2nd time

A. Zarrella, et. al, *Science Direct*, awaiting publication
Detecting π Through Digitized Waveforms

• π decay not easily detectable
 • 26 ns mean lifetime
 • 4.12 MeV energy deposit
• \(\pi^+ \rightarrow \mu^+ + \nu_\mu \rightarrow e^+ + \nu_e + \bar{\nu}_\mu \)
• \(\pi^- \rightarrow \mu^- + \bar{\nu}_\mu \rightarrow e^- + \bar{\nu}_e + \nu_\mu \)
 • 2197 ns μ mean lifetime
 • Up to 50 MeV energy deposit
 • 2\text{nd} pulse in waveform
 • Decay in detector
 • Difference = \(dt \)
Fast vs. Slow Integration for Implant Pulse

- Cuts gate π section
 - Analyze π decay inside gate

![Fast vs. Slow Integration Pi+](image1.png)

![Fast vs. Slow Integration Pi-](image2.png)
Fast vs. Slow Integration for Decay Pulse

- PSD on decay pulse
- Possible way to ID π
• dt corresponds to the time of survival for a muon
• Plotting dt
 • Exponential curve (red)
 • Generated decay constant
 • $\lambda_\mu = 4.55 \times 10^{-4} \text{ ns}^{-1}$
 • $\lambda_{\pi^+} = 4.57 \times 10^{-4} \pm 3.83 \times 10^{-7} \text{ ns}^{-1}$
dt and Decay Curves for π^-

- Generated decay constant
 - $\lambda_\mu = 4.55 \times 10^{-4} \text{ ns}^{-1}$
 - $\lambda_{\pi^-} = 5.11 \times 10^{-4} \pm 1.27 \times 10^{-5} \text{ ns}^{-1}$
Mean Lifetime of the Decaying Particle

• Inverse of decay constant
 • \(\tau_\mu = 2197 \text{ ns (red)} \)

\[\begin{align*}
\pi^+ \text{ (blue)} & \\
\tau_1 & = 2190 \pm 2 \text{ ns} \\
% \text{ error}_1 & = 0.32% \\
\tau_2 & = 2136 \pm 2 \text{ ns} \\
% \text{ error}_2 & = 2.78% \\
\tau_3 & = 2182 \pm 3 \text{ ns} \\
% \text{ error}_3 & = 0.68% \\
\pi^- \text{ (magenta)} & \\
\tau_1 & = 1957 \pm 51 \text{ ns} \\
% \text{ error}_1 & = 10.9% \\
\tau_2 & = 1832 \pm 47 \text{ ns} \\
% \text{ error}_2 & = 16.6% \\
\tau_3 & = 1822 \pm 42 \text{ ns} \\
% \text{ error}_3 & = 17.1%
\end{align*} \]
Conclusions

• Using decay trigger increases the selectivity for π by an order of magnitude
• Fast vs. Slow PID methods for the phoswiches allow for π identification and separation from other light charged particles
• Decay curves for μ daughter can be reproduced by focusing on the π implant region to further identify the original presence of a π in its PID region
I would like to thank Andrew Zarrella, Dr. Sherry Yennello, and Mike Youngs for their mentorship.

The Cyclotron Institute at Texas A&M University
The Department of Energy (DE-FG02-93ER40773)
National Science Foundation (PHY – 1659847)
The Welch Foundation (A-1266)