

The Facility for Rare Isotope Beams

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Update from yesterday:

Accepted Paper

Predicting the production of neutron-rich heavy nuclei in multinucleon transfer reactions using a semi-classical model including evaporation and fission competition, GRAZING-F Phys. Rev. C

R. Yanez and W. Loveland

Accepted 1 April 2015

25 years ago: ISL white paper

LALP 91-51

The IsoSpin Laboratory (ISL)

Research Opportunities with Radioactive Nuclear Beams

Prepared by the North American Steering Committee with portions also contributed by J. A. Sawicki, K. E. Gregorich, L. Buchmann, G.J. Mathews, L. Orozco, G. D. Sprouse, M. Hass, and J. M. Wouters

Research Opportunities with Radioactive Nuclear Beams

The

IsoSpin

Laboratory

NSAC 2002 Long Range Plan

RECOMMENDATION 2

The Rare Isotope Accelerator (RIA) is our highest priority for major new construction. RIA will be the world-leading facility for research in nuclear structure and nuclear astrophysics.

OPPORTUNITIES IN NUCLEAR SCIENCE

A Long-Range Plan for the Next Decade

April 2002

The DOE/NSF Nuclear Science Advisory Committee U.S. Department of Energy • Office of Science • Division of Nuclear Physics National Science Foundation • Division of Physics • Nuclear Science Section

Facility for Rare Isotope Beams A Future DOE-SC National User Facility

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

FRIB: Facility for Rare Isotope Beams

FRIB is located on the campus of Michigan State University and funded by the U.S. Department of Energy

Accelerator Systems: SRF Driver Linac

- Accelerate ion species up to ²³⁸U with energies of no less than 200 MeV/u
- Provide beam power up to 400kW
- Energy upgrade to 400 MeV/u for uranium by filling vacant slots with 12 SRF cryomodules

Rare Isotope Production Facility

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Fragment Separator

- Production of rare isotope beams with 400 kW beam power using light to heavy ions up to ²³⁸U with energy ≥ 200 MeV/u
 - Large acceptance: ± 40 mrad (angular) and ± 5% (momentum)
 - High magnetic rigidity: 8 Tm after target

Fast, Stopped, and Reaccelerated Beam Experimental Areas and Equipment

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

Stopped Beams at NSCL and FRIB

Multifaceted approach

- Linear gas stopper (heavier ion beams)
- Cyclotron gas stopper (lighter ion beams)
- Solid stopper (certain elements, highest intensity)

Status

- Linear gas catcher (ANL) in place and commissioning started
- Cyclotron gas stopper construction started

Reaccelerated Beams at NSCL and FRIB with ReA Facility

New accelerator and present experimental areas

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Transition from NSCL to FRIB

FRIB timeline

- 8 June 2009 DOE-SC and MSU sign Cooperative Agreement
- September 2010 CD-1 approved
- August 2013
- March 2014
- August 2014

- CD-2/3a (civil construction)
- Start civil construction
- CD-3b approved (technical construction)
- December 2020 Early completion goal
- June 2022 CD-4 (project completion)

Critical path

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

Ground breaking: March 17, 2014

Civil construction: 8 Weeks Ahead

Front-end building 16 months ahead of baseline

http://www.frib.msu.edu/

Aerial view of FRIB construction site

Conventional facilities progress

Tunnel warm and painted View inside linac tunnel from the west View of target area from the north

Conventional facilities site layout

Conventional facilities site layout: Street view

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

FRIB is needed to understand atomic nuclei

Figure adapted from www.scidacreview.org/0704/html/unedf.html

A quantitative model of atomic nuclei with predictive power does not yet exist

The neutron-rich limit is only known up to oxygen

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

FRIB is needed to understand the origin of the elements

- How were the elements from iron to uranium made?
- Where and how does the r-process occur?

<complex-block>

r-process proceeds in neutron-rich nuclei

488888888888

r-process path

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB projected production rates

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

O. Tarasov, T. Baumann

Discovery potential

How many more nuclides are there?

7000 bound nuclide should exist (Erler et al., Nature 486 (2012) 509)

Discoveries are driven by new technologies

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

M. T. and B.M. Sherrill, Nature 473 (2011) 25

Timeline Movie

http://www.nscl.msu.edu/~thoennes/isotopes

Known isotopes

Five-year running average

Discovery of superheavy elements

National Science Foundation Michigan State University G. T. Seaborg and W. D. Loveland, "The elements beyond uranium", Wiley, New York, New York (1990)

Discovery of super heavy nuclides

National Science Foundation Michigan State University G. T. Seaborg and W. D. Loveland, "The elements beyond uranium", Wiley, New York, New York (1990)

Isotope discovery project

Atomic Data and Nuclear Data Tables 99 (2013) 312-344]												
Contents lists available at SciVerse ScienceDirect Atomic Data and Nuclear Data Tables Journal homepage: www.elsevier.com/locate/adt																				
Discovery of isotopes of elements with $Z \ge 100$ M. Thoennessen National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East	Lansing,	MI 4882	24, USA													287 2	288 2	290 291 289 290	294 293 292	294 293
Flerovium]							285	286 2	287 2	288 289		
Z = 113								0	<mark>278</mark>			2	2 <mark>82</mark>	283	284	285 2	286	E	•	
Copernicium								6	277			2	281	282	283	284 2	285			
Roentgenium					272		274				278	279 2	280	281	282					
Darmstadtium ———	267		269	270	271		273				277	2	279		281					
Meitnerium ———	266		268		<mark>270</mark>				274	275	276	2	278							
Hassium <u>263</u> 264	265	266	267	268	269	270	271		273		275	2	277							
Bohrium 260 261 262	264	265	266	267			270	271	272	:	274									
Seaborgium 258 259 260 261 262	263	264	265	266	267		269		271											
Dubnium 256 257 258 259 260 261	262	263			<mark>266</mark>	267	268		270											
Rutherfordium — 253 254 255 256 257 258 259 260	261	262	263		265		267													
Lawrencium — 252 253 254 255 256 257 258 259	260																			

Connect hot and cold fusion results

Z = 118		
Z = 117		293
Livermorium ———		290 291 292
Z = 115	287	288 289
Flerovium	285 <mark>286</mark>	287 <mark>288</mark>
Z = 113	278 279 280 281 282 283 284 285	
Copernicium	277 278 279 280 <mark>281 282 283 284</mark>	
Roentgenium	272 273 274 275 276 277 278 279 280 281	
Darmstadtium	267 268 269 <mark>270</mark> 271 272 273 274 275 <mark>276 278 280</mark>	
Meitnerium	266 267 268 269 270 271 272 273 274 275 277	
Hassium	263 264 265 266 267 268 269 270 271 <mark>272</mark> 274 276	Unknown
Bohrium	260 261 262 263 264 265 266 267 268 269 271 273	
Seaborgium	258 259 260 261 262 263 264 265 266 267 <mark>268 270</mark>	Cold fusion
Dubnium	256 257 258 259 260 261 262 263 264 265 266 267 269	Odd-Z hot fusion chains
Rutherfordium ——	253 254 255 256 257 258 259 260 261 262 263 264 266	
Lawrencium ——	252 253 254 255 256 257 258 259 260	Even-Z hot fusion chains

Z versus N–Z

Z versus N–Z

Trends and systematics: S_{2p}

Trends and systematics: E_{alpha}

Energy of alpha-decay (152, 162)

Superheavies: E_{alpha}

S NSCL

National Science Foundation Michigan State University

Cwiok, Heenen, Nazarewicz, Nature 433 (2005) 705

Utyonkov and Oganessian, Nucl. Phys. A

Superheavies: T_{1/2}

National Science Foundation Michigan State University Utyonkov and Oganessian, Nucl. Phys. A

Trends and systematics: N–Z E_{alpha}

Energy of alpha-decay (152, 162)

Superheavies lines of constant Z: E_{alpha}

Superheavies lines of constant N–Z: E_{alpha}

Lines of constant N–Z

Production methods

How can new nuclides be discovered?

How produce new superheavy nuclides

- cold fusion
- hot fusion
 - multi-nucleon transfer

V. Zagrebaev and W. Greiner Phys. Rev. C 78 (2008) 34610 fusion with radioactive beams

W. Loveland, Phys. Rev. C 76 (2007) 014612

Summary and outlook

- FRIB construction is on schedule:
 - Project completion June 2022
 - Early completion in December 2020
- FRIB will most likely not discover new elements
- But FRIB could reach neutron-rich isotopes of superheavy elements towards N =184
- Research program is user driven
- Users are organized as part of the independent FRIB Users Organization with over 1400 members
- Please join at www.fribusers.org

